
EECS/ME/BioE 106B Homework 5: Grasping

Spring 2023

Problem 1: Adjoints and Wrench Transformations

How can we use robots to effectively grasp objects of arbitrary shapes and sizes? To answer
this question, we will develop physical models for the interaction between robotic systems and
objects. In this question, we’ll begin constructing these models by discussing wrenches - a
generalization of forces - and their associated transformations.
When we grasp an object, our fingers exert a force and a moment (torque) on the object.
Whereas force represents a simple pushing force, moment represents a twisting force on an
object. Recall that formally, a moment is defined to be the cross product:

τ = r × fm (1)

Where fm is a force vector producing the twisting force and r is a vector from the point of
rotation to the point where the force is applied.

By applying a force at a certain distance away from a point of rotation, we get a twisting
motion that characterizes the moment. Force and moment may both be represented by three
dimensional vectors:

f =

fxfy
fz

 , τ =

τxτy
τz

 (2)

With respect to some coordinate frame. Recall that the magnitude of the force vector indicates
the strength of the force, while the direction indicates the direction along which the force is
applied. Similarly, the magnitude of the moment vector indicates the strength of the twisting
force and the direction of the moment vector represents the axis about which the twisting force
is applied.
When considering the motion of rigid bodies, we’ll combine force and moment into a single six
dimensional vector called a wrench. Typically, wrenches are denoted by a capital letter F .

F =

[
f
τ

]
(3)

Where f and τ are expressed with respect to the same coordinate frame. When examining
the effects of these wrenches in different coordinate frames, we must transform the wrenches
between different frames. Let’s derive the form of these wrench transformations.
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Questions

1. Consider the following scenario, where we have a force fb ∈ R3 and moment τb ∈ R3 are
specified with respect to frame B.

Together, Fb = [fb, τb] ∈ R6 represents a wrench specified with respect to frame B. If the
vector from the origin of frame A to the origin of frame B is pab, and the rotation matrix
between frames A and B is Rab, prove that we may represent Fb in frame A as:

Fa =

[
Rab 0

p̂abRab Rab

]
Fb (4)

Where ∧ : R3 → so(3) is the skew symmetric hat operator. Hint: Does fb apply a moment
about the origin of frame A?

2. Starting from the formula for the adjoint of a transformation g = (p,R) ∈ SE(3):

Adg =

[
R p̂R
0 R

]
∈ R6×6 (5)

Prove that the transformation matrix defined above between Fb and Fa is the transpose
of the adjoint of g−1

ab :

AdT
g−1
ab

=

[
Rab 0

p̂abRab Rab

]
(6)

Where gab = (pab, Rab) ∈ SE(3) is the rigid body transformation:

gab =

[
Rab pab
0 1

]
(7)

This proves that the transpose of an adjoint transforms wrenches between coordinate
frames! Hint: For a rotation matrix R ∈ SO(3) and p ∈ R3, recall that (Rp)∧ = Rp̂RT .
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Problem 2: Finding a Simple Grasp Map

Let’s apply the theory of wrenches to study the interactions between robotic hands and rigid
bodies. Suppose we have a robotic hand with n fingers, each of which contact a rigid body at a
different point. We’ll define a few coordinate frames associated with these contacts to develop
a systematic method of treating the wrenches the fingers apply to the rigid body.

At the center of mass of the body, we’ll define the body frame, which we’ll conventionally denote
by the letter O. At each of the n contact points between the robotic hand fingers and the rigid
body, we’ll define a contact frame, ci, where by convention the z vector of the contact frame
points inwards along the surface normal of the body.
How can we model the interactions between the fingers and the body? There are several types
of contact models we may use to think about how the fingers apply forces to the body. The first,
and simplest of these is the frictionless point contact. A frictionless point contact will simply
apply a force to the body inwards along the surface normal at the point of contact. If contact
i is a frictionless point contact, we can represent the contact wrench in frame i as:

Fci =



0
0
1
0
0
0

 fci (8)

Where fci ≥ 0 is the magnitude of the contact force. Notice that fci ≥ 0 since frictionless point
contacts can only push on a rigid body and not pull.
A second, and more realistic type of contact is a point contact with friction. With respect to
frame i, the wrench associated with this type of contact is given by:

Fci =



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

 fci (9)

Where now, fci ∈ R3 is a 3D vector representing the contact force of the finger on the body.
Since there is friction, forces may also be applied in the x and y direction in the contact frame
in addition to the z direction.
When working with arbitrary types of grasps, we refer to the matrices or vectors multiplied by
fci as wrench bases, denoted by Bci . Each Bci provides with a mapping from fci , the contact
force from contact i, to Fci , the wrench associated with contact i in frame ci. Thus, we have
the general relation:

Fci = Bcifci (10)
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Questions

Note: You may use a symbolic calculator such as MATLAB symbolic or SymPy if you wish to
perform the computations in this section. If you choose to do this, please note where you used
the calculator and attach a screenshot of your code.

1. Suppose we have the following points of contact between a rectangular rigid body of side
lengths l and 2l and a three-fingered hand:

Each finger contacts the rigid body at the center of one of its sides. If goci ∈ SE(3) is the
rigid body transformation matrix between the contact frame ci and the body frame O,
compute the following adjoint transformations:

AdT
g−1
oc1

, AdT
g−1
oc2

, AdT
g−1
oc3

(11)

You may leave your answer in terms of the length l, and may assume that each contact
frame is rotated by a multiple of 90 degrees with respect to the body frame.

2. With respect to the contact frame ci, the wrench applied by contact ci to the body is
computed by taking the product Fci = Bcifci . Show that the total wrench applied to the
body in the body frame is computed by taking the product:

Fo =
[
AdT

g−1
oc1

Bc1 AdT
g−1
oc2

Bc1 AdT
g−1
oc3

Bc3

]fc1fc2
fc3

 (12)

The matrix containing the products of adjoints and wrench bases is known as the grasp
map, G. This matrix maps from each finger contact force to the net body wrench.

3. If each finger is a point contact with friction, calculate the grasp map matrix G for the
system in part 1. If there were a fourth point contact with friction applied to the rigid
body, what would the shape of the grasp map matrix be?
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Problem 3: Finding an N Finger Grasp Map

Let’s generalize our results about grasping and contact modelling. If we have a rigid body and
a robot hand with n fingers, we define the grasp map to be the matrix:

G =
[
AdT

g−1
oc1

Bc1 AdT
g−1
oc2

Bc1 ... AdT
g−1
ocn

Bcn

]
(13)

Where each ci represents one of the finger contacts and each Bci is the wrench basis of the ith

contact. Let’s derive the grasp map for a circular object in contact with n robotic fingers.

Questions

Note: You may use a symbolic calculator such as MATLAB symbolic or SymPy if you wish to
perform the computations in this section. If you choose to do this, please note where you used
the calculator and attach a screenshot of your code.

1. Consider the following system. Suppose we have a circular object of radius r that is being
held by a robotic hand with n fingers.

Each contact ci is at an angle θi, traced counter clockwise from the y0 axis of the body
frame, O. Find an expression for the adjoint transformation:

AdT
g−1
oci

∈ R6×6 (14)

In terms of θi and r. You may assume that the y and z axes of all of the frames are within
the same plane, and that the x axes point out of the page. Further, assume that all grasps
make contact with the circle at x = 0.

2. We know that the grasp map for a system of n grasps may be computed using:

G =
[
AdT

g−1
oc1

Bc1 AdT
g−1
oc2

Bc1 ... AdT
g−1
ocn

Bcn

]
(15)

If each contact for the system discussed above is a frictionless point contact, find an
expression for:

AdT
g−1
oci

Bci (16)

This gives an expression for each column of the grasp map for our circular object!
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Problem 4: Force Closure Grasps

Let’s think a little bit more deeply about the contacts between robotic fingers and rigid bodies.
When a finger comes into contact with a body, the body exerts a normal force onto the finger
along the surface normal of the body at the point of contact.

If the contact is a simple point contact with friction, a static frictional force proportional in
magnitude to the normal force will be generated by the contact. This frictional force will be
tangent to the surface at the point of contact. All possible frictional forces must lie within a set
called the friction cone, depicted above, where the largest frictional force without the contact
slipping is given by:

ff = µfn (17)

Where fn is the magnitude of the normal force, ff is the magnitude of the frictional force, and
µ is a coefficient known as the coefficient of static friction.
For this case, we may mathematically define the friction cone to be the set:

FC = {f ∈ R3 :
√
f2
1 + f2

2 ≤ µf3, f3 ≥ 0} (18)

Where f1, f2 are frictional forces and f3 is the force normal to the surface in the contact frame.
For a robotic hand with n points of contact, we refer to the friction cone associated with each
point of contact as FCci . Thus, to consider the set of all possible combinations of contact-related
forces, we define the total friction cone, FC, as:

FC = FCc1 × FCc2 × ...× FCcn (19)

Where × represents the Cartesian product, an operation that returns a set containing all com-
binations of the set elements. The elements of the total friction cone FC are vectors containing
each contact force fci .

FC = [fT
c1, f

T
c2 , ..., f

T
cn ]

T (20)

Using the friction cone, we may determine if our grasp on the rigid body is secure enough to
resist any external wrench applied to the rigid body. If G is the grasp map of the robotic hand
on the rigid body, we say that the grasp will be able to resist any external wrench Fe ∈ R6 if:

G(FC) = R6 (21)

Since we must be able to oppose any external wrench in R6 using the contact forces of the
fingers. A grasp that has the property G(FC) = R6 is said to be a force closure grasp. Let’s
develop some conditions to determine if a grasp is force closure!
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Questions

In this question, we’ll consider the case where we have n frictionless point contacts on a rigid
body. The friction cone for each frictionless point contact ci is simply the set of scalar normal
forces:

FCci = {f ∈ R : f ≥ 0} (22)

As we now don’t have to deal with frictional forces. Note that f ≥ 0 since a frictionless point
contact can only push on a rigid body, not pull.

1. Let’s gain an intuitive feel for what a force closure grasp is. Consider the following planar
systems, where external forces may only be applied within the plane of the page and
external moments may only be applied along the axis coming out of the page.

If each arrow represents a frictionless point contact, determine if the grasps above are force
closure without performing any calculations. If the grasp is not force closure, sketch a
force vector or moment vector that the grasp would not be able to resist. You may assume
B is a perfect circle. Hint: Imagine pulling and turning the object in each direction.

2. Suppose we have a set of n frictionless point contacts on a rigid body. What is the shape
of the grasp map G for a system of n frictionless point contacts? Hint: What is the wrench
basis for a frictionless point contact?

3. The friction cone FC for a set of n frictionless point contacts is the set of vectors:

FC = {[f1, ..., fn]T : fi ≥ 0} ⊆ Rn (23)

Let G1, ..., Gn be the columns of the grasp map G for this grasp. Prove that this grasp is
force closure if and only if for all v ∈ R6 there exist positive constants αi ≥ 0 such that:

v = α1G1 + ...+ αnGn. (24)

Hint: A grasp is force closure if and only if G(FC) = R6. Split up G into its columns
G1, ..., Gn.

4. Prove that the minimum number of vectors v1, ..., vk ∈ Rn such that for all v ∈ Rn, there
exist constants αi ≥ 0 where:

v = α1v1 + ...+ αkvk (25)

Is k = n + 1. Using this result, what is the minimum number of frictionless point con-
tacts required to have a force closure grasp of a 3D (non-planar) rigid body with applied
wrenches Fo ∈ R6? Hints: Start by proving a set of k ≤ n vectors cannot span Rn in this
manner. Then, consider a basis {v1, ..., vn} and vn+1 = −λ1v1 − ...− λnvn, λi > 0.
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Problem 5: Surface Geometry & Kinematics

In the real world, rigid objects and robotic fingers are most accurately modeled as surfaces.
Instead of having a simple point contact between an object and a surface that remains stationary
in time, a robotic finger might roll across a surface as time passes.
To precisely understand how this rolling motion occurs, we must develop an understanding of
the geometry of the surfaces we wish to grasp. In this question, we’ll develop some fundamental
aspects of surface geometry that may be applied to describe the rolling motion of surfaces.

Questions

Note: You may use a symbolic calculator such as MATLAB symbolic or SymPy if you wish to
perform the computations in this section. If you choose to do this, please note where you used
the calculator and attach a screenshot of your code.
In this question, we’ll consider the geometry of a sphere, pictured below:

As this sphere is a surface embedded in three dimensions, we only need two coordinates, u and
v, to describe the location of a point on the surface. Let’s explore the consequences of this (u, v)
surface parameterization, and see what it tells us about the geometric properties of the shape.

1. First, we’d like to understand how we can move between our two dimension parameteriza-
tion of the surface (u, v) ∈ R2 and the actual three-dimensional coordinates corresponding
to (u, v). To accomplish this, we define a special type of function called a chart :

c : (u, v) ∈ R2 → R3 (26)

With respect to the object coordinate frame, defined to be at the center of the sphere in
the image above, a chart of the sphere with respect to (u, v) is:x(u, v)y(u, v)

z(u, v)

 =

ρ cosu cos vρ cosu sin v
ρ sinu

 (27)

Where ρ is the radius of the sphere.
It may be shown that the plane tangent to the surface at each (u, v) is spanned by:

cu =
∂c

∂u
, cv =

∂c

∂v
(28)

Find the vectors cu and cv using the chart provided and prove that they are orthogonal.

8



2. Using the cross product between cu, cv, we can identify a unit normal vector n to the
surface. We can use the {cu, cv, n} orthogonal coordinate frame to define the contact
frames of robotic fingers on the surface of the object. Assuming n points outwards on the
sphere, sketch the {cu, cv, n} coordinate frame at the marked point on the sphere:

3. The tangent space to a three-dimensional surface at a point is defined to be the two
dimensional plane tangent to the surface at that point. If x, y ∈ R2 are two vectors in
the tangent space of the sphere at p = (u, v), we define the inner product between these
vectors to be:

xT
[
cTu cu cTu cv
cTv cu cTv cv

]
y = xT Ipy (29)

The matrix Ip is known as the first fundamental form matrix for a surface, and contains
||cu||2 and ||cv||2. Related to Ip, we define the metric tensor to be the matrix Mp ∈ R2×2

such that:

Ip = MpMp (30)

Show that Mp for the sphere is computed:

Mp =

[
ρ 0
0 ρ cosu

]
(31)

Note: Metric is a name for a measure of length - this gives the metric tensor its name.

4. Let’s bring our discussion back to kinematics. Suppose we have a trajectory p(t) ∈ R3

that traces out a path on the surface of the sphere, defined:

p(t) =

x(t)y(t)
z(t)

 =

ρ cos(ωut) cos(ωvt)
ρ cos(ωut) sin(ωvt)

ρ sin(ωut)

 (32)

Using the chart c, convert this 3D path into α(t) = (u(t), v(t)) ∈ R2 coordinates. Then,
calculate α̇(t).

5. Let’s define two other objects, the curvature tensor Kp and the torsion form Tp, which
tell us about curvature and its rate of change along the surface. For the sphere, it may
be shown that Kp and Tp are computed:

Kp =

[
1/ρ 0
0 1/ρ

]
, Tp =

[
0 −(1/ρ) tanu

]
(33)

Consider the following theorem concerning the use of Mp,Kp, Tp in kinematics.
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Theorem 1 Body Velocity for a Path
The body velocity of the contact frame C (given by the vectors {cu, cv, n}) with respect to
the body frame O, is given by V b

oc = (voc, ωoc), where:

voc =

[
Mpα̇
0

]
(34)

ω̂oc =

 0 −TMα̇
TMα̇ 0

KMα̇

−(KMα̇)T 0

 (35)

Use this theorem to calculate voc and ω̂oc for the provided path along the sphere. This
gives us an expression for rigid body velocity along the path!
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Problem 6: Lagrange Multipliers for Constrained Motion

When grasping objects using robotic systems, it’s not only important for us to have an under-
standing of the kinematics of grasping, but it’s also valuable to understand the dynamics of
grasping. By studying the dynamics associated with grasping, we can derive differential equa-
tions of motion that help us understand how contact forces impact the motion of a rigid body.
When studying the dynamics of grasping, we must formally account for the presence of con-
straints - both holonomic and nonholonomic, on the dynamics of our system. In this question,
we’ll perform an analysis of a simple system under the influence of a constraint.
Recall from our study of kinematic constraints that a set of k constraints may be written in
Pfaffian form as:

A(q)q̇ = 0 (36)

Where q ∈ Rn is the vector of generalized coordinates used to describe the motion of the system
in question and A(q) ∈ Rk×n. If this constraint is holonomic, or integrable, there exists a
vector-valued function h(q) ∈ Rk such that:

A(q)q̇ = 0 ↔ h(q) = 0 (37)

A constraint force, Γ, is a generalized force Γ ∈ Rn that ensures the system obeys its kinematic
constraints. The constraint force Γ for a Pfaffian constraint A(q)q̇ = 0 is of the form:

Γ = AT (q)λ (38)

Where λ ∈ Rk is a vector containing the relative strengths of each constraint force. Each λi

inside the vector λ is an unknown called a Lagrange multiplier. When writing out the constraint
force in this form, the value of each Lagrange multiplier is unknown - each must be solved for
by looking at the dynamics and constraint equations!
To consider the effect of the constraint forces on the system, we treat the constraint forces as
external forces on the system. Assuming the constraint force does no work on the system, we
may write the set of Lagrange’s equations in the presence of a constraint force as:

d

dt

(∂L
∂q̇

)
− ∂L

∂q
+AT (q)λ = Υ (39)

Where Υ is a vector of other external forces applied to the system and q is the vector of gen-
eralized coordinates of the unconstrained system, and L is the unconstrained Lagrangian - the
Lagrangian as if no constraints existed on the system.
Once the set of n Lagrange’s equations have been computed, the Lagrange multipliers may be
solved for by looking at the constraint equation A(q)q̇ = 0 and the Lagrangian equations of
motion. Typically, each Lagrange multiplier will be a function of q, q̇, and Υ.
Note that the method of Lagrange multipliers is not the only way of dealing with constrained
systems! Rather, it gives us a systematic method of working from the unconstrained system
towards the constrained system. Other methods relying on directly substituting constraints
into the Lagrangian may also be used.
Let’s analyze and apply the method of Lagrange multipliers to determine the equations of mo-
tion of a simple constrained system!
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Questions

Consider the following planar system, in which a particle slides without friction along a parabolic
path of equation y = x2:

The center of mass of the particle is described by the coordinates (x, y).

1. Let’s begin by thinking about the form of a constraint force for a holonomic constraint. A
holonomic constraint h(q) = 0 is a vector-valued function composed of k scalar constraint
functions, hi(q), where q ∈ Rn is a vector of generalized coordinates.

h(q) =

hi(q)...
hk(q)

 =

0...
0

 (40)

Recall that for a Pfaffian constraint A(q)q̇ = 0, the associated constraint force Γ ∈ Rn is
of the form Γ = AT (q)λ, where λ ∈ Rk is a vector of scalar Lagrange multipliers.
Each constraint hi(q) = 0 represents a surface in space. Show that for a holonomic
constraint h(q) = 0, the constraint force Γ is a linear combination of the surface normals
of the constraint surfaces hi(q) = 0. Hint: From calculus, ∂hi/∂q is normal to the surface
hi(q) = 0.

2. Let’s turn our attention to the particle sliding on the parabola. Show that the Lagrangian
of the unconstrained particle system is computed:

L = T − V =
1

2
m(ẋ2 + ẏ2)−mgy (41)

Where m is the mass of the particle.

3. This system is constrained to travel along the parabolic path y = x2. Show that if
q = [x, y]T , this constraint may be represented in Pfaffian form as:

A(q)q̇ =
[
−2x 1

]
q̇ = 0 (42)

4. If the constraint force on the system is of the form Γ = AT (q)λ ∈ R2, λ ∈ R, use the
Lagrange multiplier form of Lagrange’s equations:

d

dt

(∂L
∂q̇

)
− ∂L

∂q
+AT (q)λ = Υ (43)

To find the equations of motion of the system in terms of λ. You may assume Υ = 0.

5. Use the equations of motion and the constraint equation A(q)q̇ = 0 to solve for the
Lagrange multiplier λ, and Γ = AT (q)λ in terms of q, q̇,m, I.
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