
ME/EECS/BioE 106B Homework 1: Dynamical Systems

Due 1/24/2022, 11:59 P.M.

Foreword

This homework is a mathematically oriented assignment designed to equip you with some of
the techniques we’ll need going forward to describe robotic systems. In particular, we’ll focus
on the analysis of dynamical systems, systems whose state evolves with the passage of time.
For further reading on the topics we discuss in this assignment, we recommend checking out
chapters 3, 5, and 6 of Feedback Systems: An Introduction for Scientists and Engineers by
Murray and Astrom.
You may use a symbolic toolbox such as MATLAB Symbolic or SymPy to aid in your cal-
culations - please reference in your work where, if at all, you use these tools, and provide a
screenshot of your code.

Problem 1: State Space

Ordinary differential equations, or ODEs, vital to the study of control theory. In this section,
we’ll discuss some important representations of ODEs that we’ll refer to across our exploration
of controls in this course!
Let’s take a moment to develop some conventions for differential equations. In general, we may
represent an arbitrary, nth order nonlinear differential equation as a system of n first order
differential equations, of the form:

ẋ =
dx

dt
= f(x, u) (1)

Where x ∈ Rn is the state vector, u ∈ Rm is the input vector, t is time, and f is a smooth1 map.
Note that if f does not explicitly depend on time, the system is called time invariant. The
representation of a nonlinear system as a system of n first order differential equations is known
as the state space representation of the system. Let’s break down the different components of
this system description.
In the state space representation, x is known as the state vector. The state vector contains the
smallest possible set of variables, known as state variables, that enable us to completely describe
the system at any one point in time. The input vector, u ∈ Rn, contains the set of variables
that we have direct control over. We may change the input vector to modify the behavior of
the system.
How can we convert high order, nonlinear equations into state space form? Suppose we have
the following high order, nonlinear differential equation:

dnx

dtn
= f(x) (2)

Where x ∈ R and f is a smooth function of x. How can we convert this equation from an nth

order ODE to a system of n first order ODEs?

1For existence and uniqueness of a solution to be guaranteed, f must be Lipschitz continuous with respect to
x and piecewise continuous with respect to t.
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We may introduce a set of variables known as phase variables. This set of of n variables,
{q0, q1, ..., qn−1}, is defined as follows:

x = q0 (3)

dx

dt
= q1 (4)

d2x

dt2
= q2 (5)

... (6)

dn−1x

dtn−1
= qn−1 (7)

Using these phase variables, we can rewrite our original nth order differential equation as a
system of coupled first order differential equations as follows:

d

dt


q0
q1
q2
...

qn−1

 =


q1
q2
q3
...

f(q0)

 (8)

Thus, using phase variables, we can elegantly represent higher order differential equations as
systems of first order differential equations! This enables us to write all higher order nonlinear
systems in standard state space form.
Let’s get some practice working with state space and phase variable representations of systems.

Questions

1. Consider a car which travels uphill in the presence of air resistance.

The position and velocity of the center of mass of the car along the slope are described
by x, ẋ respectively. The car has a mass m, and is affected by the presence of gravity. Fa

is the force applied to the car when the driver presses on the accelerator pedal. Fd, which
is calculated according to the formula below, is the force due to drag.

Fd = −1

2
ρCdA|ẋ|ẋ (9)

Where Cd is the drag coefficient of the vehicle, A is the frontal area of the car, and ẋ is
the velocity of the car.
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Using the methods of Newtonian or Lagrangian mechanics, show that the motion of the
car is described by the following second order, nonlinear differential equation:

mẍ = Fa −mg sin θ − 1

2
ρCdA|ẋ|ẋ (10)

2. Using the method of phase variables, rewrite the system dynamics as a first order system
of ODEs in state space:

q̇ = f(q, u) (11)

Where q ∈ Rn is the state vector and u ∈ Rm is the input vector to the system. Choosing
a state vector q = [x, ẋ] and an input vector u = Fa, rewrite the car dynamics in the form:

d

dt

 q0
...

qn−1

 =

 q1
...

h(q, u)

 (12)

Where h is a function of the state vector q and an input to the system, u. Note that
h(q, u) may have constant terms that don’t involve the state vector variables!

3. Are there other types of nonlinear systems other than ẋ = f(x, u)? In robotics, it’s often
the case that the system’s equations of motion may be placed in control affine form:

ẋ = f(x) + g(x) · u, x ∈ Rn, u ∈ Rm (13)

Where f(x) is known as the drift dynamics and g(x) is a matrix-valued function in Rn×m.
In this form, we may explicitly separate the impact of the input, u, from the unforced
behavior of the system.
Can the car’s equations of motion be placed in control affine form? If so, rewrite the
system in control affine form, q̇ = f(q)+ g(q)u (note that f here is not the same as in the
previous part). If not, explain what is preventing us from writing the system in control
affine form.
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Problem 2: Equilibrium Points

So far, we’ve studied differential equations of the form:

ẋ = f(x, u) (14)

ẋ = f(x) + g(x)u (15)

How may we interpret these differential equations? What properties are important to study
and identify in a system? One concept essential to the study of differential equations is that of
an equilibrium point.

Definition 1 Equilibrium Point
An equilibrium point of a dynamical system:

ẋ = f(x, u) (16)

Is any pair of state and input vectors (xe, ue), satisfying:

0 = f(xe, ue) (17)

At an equilibrium point, the time derivative of the state vector is zero! This tells us that the
evolution of the system appears to be “frozen” when the system is at an equilibrium point, since
the state vector is not changing with respect to time.
Suppose we start our system at a point xo close to the equilibrium point xe. How can we tell
if the system will stay close to the equilibrium point or if it will diverge from the equilibrium?
This question is essential to the study of stability.
Conceptually, an equilibrium point is stable if trajectories that “start close” to the equilibrium
point “stay close” to the equilibrium point for all time.2 An equilibrium point is unstable if
trajectories that start close to the point stray far from the equilibrium point as time passes.

Above: An unstable trajectory diverges from an equilibrium point of y = 0, while a stable
trajectory remains close to the equilibrium.

Although we haven’t yet developed a mathematically rigorous definition for stability, there is
still a significant amount of interesting analysis we can perform! Let’s get some practice with
equilibrium points and stability.

2This language will be formalized in the definition of Lyapunov stability.
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Questions

1. Consider the linear system of first order differential equations:

ẋ = Ax, x ∈ Rn, A ∈ Rn×n (18)

Prove that xe ∈ Rn is an equilibrium point of the linear system above if and only if it is
in the null space of A or is the zero vector.

2. Consider a diagonal n× n matrix, where λi ̸= 0, 1 ≤ i ≤ n:

A =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 0 λn

 (19)

Prove that for any initial condition x(0) = x0, the solution to the differential equation:

ẋ = Ax (20)

Will be such that limt→∞x(t) = 0 if and only if all of the eigenvalues of A have real
components less than zero (Re(λi) < 0). Hint: What is the solution to the system of
differential equations? Does a linear system have a unique solution for any given initial
condition?

3. In the previous problem, we discussed stability in the case where A is diagonal. Let’s try
to generalize our results somewhat!3

Suppose A ∈ Rn×n is diagonalizable but not necessarily diagonal. Prove that for all initial
conditions x(0) = x0 ∈ Rn, the system:

ẋ = Ax (21)

Has a solution x(t) such that limt→∞x(t) = 0 if and only if all of the eigenvalues of A
have real parts less than zero. This tells us that the stability of a linear system about its
origin is characterized by its eigenvalues!4

3This may be proved for a non diagonalizable matrix using the Jordan Canonical Form.
4In particular, this is the asymptotic stability.
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Problem 3: The Jacobian Linearization

Oftentimes, we’re interested in the behavior of a dynamical system close to certain values of the
state vector, x. When we’re close to the equilibrium points of a system, we may approximate
a nonlinear system by a linear system. This approximation is one that often helps us simplify
our analysis, as it is typically simpler to deal with linear systems compared to nonlinear ones.
We may approximate a time invariant nonlinear system of n first order differential equations:

ẋ = f(x, u), x ∈ Rn, u ∈ Rm (22)

About an equilibrium point (xe, ue) as a system of n linear differential equations:

ż = Az +Bv (23)

Where z and v are defined:

z = x− xe (24)

v = u− ue (25)

And A and B are matrices that are calculated by taking partial derivatives of f with respect
to the state and input vectors:

A =
∂f

∂x

∣∣∣
(x,u)=(xe,ue)

=


∂f1
∂x1

... ∂f1
∂xn

...
. . .

...
∂fn
∂x1

... ∂fn
∂xn


(x,u)=(xe,ue)

∈ Rn×n (26)

B =
∂f

∂u

∣∣∣
(x,u)=(xe,ue)

=


∂f1
∂u1

... ∂f1
∂up

...
. . .

...
∂fn
∂u1

... ∂fn
∂up


(x,u)=(xe,ue)

∈ Rn×p (27)

Where |(x,u)=(xe,ue) means “evaluate the derivative at x = xe, u = ue.” This type of linear
approximation is known as a Jacobian linearization.
This approximation may be compared to a Taylor series approximation of a nonlinear function
at a point. In the neighborhood of a particular point, we may approximate a function by a
tangent line. For example, consider the function f(x) = x2, which has been plotted below.

At the point x = 1, we can gain a close approximation of the nonlinear function f(x) = x2 by
finding the derivative of f , evaluating it at the point x = 1, and finding the equation of the
tangent line.
The Jacobian linearization takes this concept from single variable calculus, extends it to multiple
variables, and applies it to the study of differential equations to approximate the behavior of a
nonlinear system.
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Questions

1. Consider the simple pendulum with length l and mass m, that swings under the force of
gravity:

If a torque τ is applied to the pendulum about its point of rotation, show using the methods
of Newtonian or Lagrangian mechanics that the pendulum dynamics are expressed:

ml2θ̈ = τ −mgl sin θ (28)

Then, show that these dynamics may be written in state space as:

ẋ = f(x, u) (29)[
θ̇

θ̈

]
=

[
x2

1
ml2

(u−mgl sinx1)

]
(30)

Where the state vector is x = [x1, x2] = [θ, θ̇] and the input vector is u = τ .

2. Calculate the Jacobian linearization of the pendulum about the point:

xe =

[
x1e
x2e

]
, ue (31)

Your final answer should be presented in the form:

ż = Az +Bv (32)

Where z = x−xe and v = u−ue. Your A and B matrices may depend on the equilibrium
point! You may assume that (xe, ue) is a valid equilibrium point of the system.

3. Is the Jacobian linearization of the system at (x, u) = (xe, ue) a good approximation for all
values of x, u? When might it no longer be a good approximation of the system behavior?
Provide a brief worded explanation of your reasoning.
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Problem 4: Discrete Time Systems

So far, we’ve discussed of continuous time dynamical systems - systems whose states change
smoothly with respect to time. These systems are what we encounter when describing the
motion of real-world physical objects and are thus the main class of system we’ll focus on in
this course.
Let’s consider what happens when these systems interact with digital systems such as computers!
Computers cannot collect data or perform computations in continuous time - they sample data
from sensors and send control pulses at discrete intervals in time!
Because we control robotic systems with digital systems, it’s often important for us to develop
discrete time approximations of the continuous time systems we want to control. How can we
describe such a discrete time system?
A nonlinear discrete time system is typically represented in the following form:

x(k + 1) = f(x(k), u(k)) (33)

Where k is an integer that represents the current “time step” of the system. When k = 0, we’re
examining the first time step, which happens at t = 0. At k = 1, some interval ∆t of time has
passed. At k = 2, 2∆t has passed, and so on. Assuming a constant sampling interval ∆t, this
gives us the following relationship between the time t at each time step and the time step k:

t = k∆t, k ∈ Z+
0 (34)

Where Z+
0 is the set of positive integers including 0.

Above: A sinusoidal function sampled at discrete intervals.

How can we approximate a continuous time system of the form ẋ = f(x, u) as a discrete time
system of the form x(k + 1) = f(x(k), u(k))? In this problem, we’ll provide an answer to this
question and more!

Questions

1. The process of approximating a continuous time system by a discrete time system is called
discretization. In this problem, we’ll discuss a simple type of discretization known as Euler
Discretization, which is commonly used in optimization-based controllers.
Euler Discretization approximates ẋ = f(x, u) as the following discrete time system:

x̂(k + 1) = x̂(k) + f(x, u)∆t (35)
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Where x̂(k) is the discrete time estimate of x(t). For a constant sampling time of ∆t, prove
that for smooth f ,5 in the limit lim∆t→0, this approximation converges to the continuous
time system. Hint: For a sampling time ∆t, the relation between discrete and continuous
time is t = k∆t.

2. Now that we have a discrete time system, let’s investigate some of its properties! In this
question, we’ll begin a rigorous analysis of the stability of discrete time systems using the
contraction mapping theorem.6

Note that this is by no means the only way of analyzing discrete time stability, but is
rather an interesting and fun one!

Theorem 1 Contraction Mapping Theorem
Let f : Rn → Rn be a function defined on all of Rn and assume that there is a constant c
such that 0 ≤ c < 1 and:

||f(x)− f(y)|| ≤ c||x− y|| (36)

For all x, y ∈ Rn. Functions that satisfy this condition are called contraction mappings.
If f is a contraction mapping:

(a) f is continuous on Rn.

(b) If y is a fixed point of f (y = f(y)), it is the only fixed point.

(c) If x is any arbitrary point in Rn, the sequence {x, f(x), f(f(x)), f(f(f(x))), ...} con-
verges to the fixed point y.

Suppose we have a linear discrete time system of the form:

x(k + 1) = Ax(k), x ∈ Rn, A ∈ Rn×n (37)

Show that if all of the eigenvalues of A have a magnitude 0 ≤ |λi| < 1, the only fixed
point of the mapping f(x) = Ax is the zero vector, x = 0. Hint: Proceed by contradiction.

3. Consider a diagonal matrix A ∈ Rn×n, defined:

A =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 0 λn

 (38)

Where 0 ≤ |λi| < 1 for all i. Show that f(x) : x 7→ Ax is a contraction mapping.
Hint: remember that λi can be complex! Make sure to deal with this in your solution.

4. Suppose A ∈ Rn×n is a diagonalizable matrix. Using the contraction mapping theorem,
conclude that for any initial condition x(0) = x0, the solution to the linear system:

x(k + 1) = Ax(k), x(0) = x0 (39)

Converges to 0 as k → ∞ if 0 ≤ |λi| < 1 for all i, where λi is an eigenvalue of A. This
proves that if all of the eigenvalues of A are within the open unit disk in the complex
plane (excluding r = 1), the origin will be a stable equilibrium point. Note: This is also
true when A is not diagonalizable, but the proof requires further mathematics.

5f must be Lipschitz continuous for this to hold.
6The proof of the contraction mapping theorem is lots of fun, but requires some knowledge of Cauchy sequences.

You’re encouraged to try it! This theorem turns out to be highly important to the study of nonlinear systems.
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Bonus: Phase Portraits

Thus far, we’ve primarily discussed analytical methods for interpreting dynamical systems. Can
we take a more graphical approach to the analysis of dynamical systems to gain a visual intuition
for these mathematical problems?
Phase portraits are diagrams that provide us with an interpretable picture of a dynamical
system. Through analyzing these pictures, we can gain some visual perspective for properties
such as stability, convergence, and oscillation!
How can we draw a phase portrait? Although the concept of a phase portrait does generalize
to n dimensions, they’re only generally useful to us for two or three dimensional systems, as
visualizing four and higher dimensions proves to be quite tricky in our three dimensional world.
Let’s consider the following two-dimensional system:[

ẋ1
ẋ2

]
=

[
f1(x1, x2)
f2(x1, x2)

]
(40)

Where f1 and f2 are arbitrary smooth functions. To draw a phase portrait, our first step is to
draw the vector field [f1(x1, x2), f2(x1, x2)]. Let’s review how we can do this!
As this is a two dimensional system, our vector field will require two coordinate axes. On the
first axis, we can place x1, and on the second axis x2. Then, at a selection of points in the
(x1, x2) coordinate plane, we draw the vector given by [f1(x1, x2), f2(x1, x2)].
Once we’ve sketched out enough of these vectors, we find that by following the direction of
the vector arrows, we actually trace out trajectories of the system in the (x1, x2) plane! These
trajectories, which are the solutions to the differential equation for different initial conditions,
form the phase portrait of the system.

Above: An example of a 2D phase portrait for a dynamical systems. (From Murray & Astrom,
Feedback Control Systems)

Phase portraits provide us with an elegant way of visualizing the dynamical systems that arise in
robotics and control. In this question, we’ll see what patterns we can find in the phase portraits
of various linear systems of differential equations, and see what interesting connections we can
make to other fields of mathematics.

Questions

1. Let’s begin our brief study of phase portraits with an observation! When a linear system
of differential equations, ẋ = Ax has complex eigenvalues, the phase portrait of the system
appears to “swirl” around the origin of the system.
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In vector calculus, we can measure the “swirl” of a vector field using a vector called curl.
To calculate the curl of a vector field f = [f1, f2, f3], we use the formula:

curl f = ∇× f =

 ∂
∂x
∂
∂y
∂
∂z

×

f1(x, y, z)f2(x, y, z)
f3(x, y, z)

 (41)

Which takes the cross product of the gradient operator with the vector field. The direction
of the curl vector represents the axis of swirl, while the magnitude represents the strength.
Prove that for the two-dimensional dynamical system q̇ = Aq, defined:[

ẋ
ẏ

]
=

[
a b
c d

] [
x
y

]
(42)

The curl of the system is nonzero if A has complex eigenvalues. Note: Since this is a
two-dimensional vector field, to compute the curl, set f3(x, y, z) = 0 and use the formula
provided above.

2. Can we use a phase portrait to visually recognize if an equilibrium point is stable? If
an equilibrium point is stable, all of the phase portrait trajectories passing through the
equilibrium point will point inwards towards the point!

Let’s see if we can quantify the inward and outward flow of trajectories using the language
of vector calculus.
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The divergence of a vector field is a quantity that expressed the flow coming from or
moving into a particular point in a vector field. The divergence of a vector field f(x, y, z)
is computed as follows:

div f = ∇ · f =

 ∂
∂x
∂
∂y
∂
∂z

 ·

f1(x, y, z)f2(x, y, z)
f3(x, y, z)

 (43)

Where we take the dot product of the gradient operator with the vector field.
We recall that for a linear system, q̇ = Aq, the origin is a stable equilibrium point if all of
the eigenvalues of A have negative real components.
Prove without explicitly computing the eigenvalues of A that if the origin is a stable7

equilibrium point, the divergence of:[
ẋ
ẏ

]
=

[
a b
c d

] [
x
y

]
(44)

Is less than zero. Note: You should just use the eigenvalue conditions for stability of linear
systems in this question.

7Using the eigenvalue conditions we have discussed, you may assume this system is asymptotically stable.
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