
C106B Discussion 9: Grasping

1 Introduction

Grasping objects is a major part of current robotic manipulation research. To approach this problem, we
will discuss wrenches and their mathematical properties and then apply them to the idea of contact forces.

2 Wrenches

Last semester, we started our discussion of robotic arm movement talking about kinematics. This deals with
the different positions and angles our body frame can potentially reach. The orientation of the B frame with
respect to the A frame is given by the forward kinematic map:

gAB(θ1) = eξ̂1θ1gAB(0)

We then discussed kinetics, which deal with velocities and accelerations. The relative velocity of a point
given in the body frame for some angular velocity θ̇ is

vqS = V̂ s
ABqS , V s

AB = ξ′θ̇ =

[
vsAB

ωs
AB

]

vqB = V̂ b
ABqB , V b

AB = ξ†θ̇ =

[
vbAB

ωb
AB

]
where ξ′ and ξ† are the current spatial and body twists.

Now, we move to dynamics for an arm - analyzing the relationship between forces applied on the body and
its motion! A wrench follows the same kind of linear/angular form as twists:

Γ =

[
f
τ

]
where f is a linear force component, and τ is a torque.

Unlike angular velocities, however, to compute the total torque on some joint, we use the transpose of the
twist.

τ = ξ′TΓS

τ = ξ†
T

ΓB

The difference between the spatial and body wrench Γs is the frame in which we are applying the wrench.
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Problem 1: How does a wrench ΓB applied on the B frame affect the torque at joint ξ1?

Because we are applying a wrench on frame B, it will look like the following:

ΓB =


fx
fy
fz
τx
τy
τz


The torque τ on ξ1 will be equivalent to ξTBΓ

B . Recall that a twist ξ is a 6x1 vector composed of

[
−ω × q

ω

]
.

Let’s compute each part of this vector.

Our ω will be the axis of rotation expressed in B. Since ξ1 points in the z-direction, we have ω =

00
1

.
The point q is some point on the axis of rotation, also expressed in the B frame. An easy one is q =

−l2
0
0

.
If we put the two together, we get −ω × q =

0
l2
0

.
To calculate our final torque τ = ξTΓ =

[
0 l2 0 0 0 1

]
ΓB . You can think of this as an F · d

3 Adjoints for Wrenches

Spatial and body velocities are related to one another using adjoints (which are invertible):

V S
AB = AdgAB

V b
AB

Adg =

[
R p̂R
0 R

]
Can we figure out a similar relationship for wrenches?

It turns out we can!
ΓS = AdT

g−1
AB

ΓB

Problem 2: The work of a force is calculated by W = F · d. Two wrenches are equivalent if they generate
the same amount of work. Use this concept to prove the adjoint relationship for wrenches.

Let’s express the work equation using velocities instead, as displacement is an integral of velocity. Specifically,
W =

∫ t2
t1

F · V dt =
∫ t2
t1

Γ · V dt.

This holds true for both spatial and body wrenches; as a result, W =
∫ t2
t1

ΓS · V dt =
∫ t2
t1

ΓB · V dt
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Let’s pull out the integrand, which we can do because on an infinitesimal basis, they should be equivalent.

ΓS · V s = ΓST

V s = ΓB · V B (1)

= (ΓB)TV B (2)

= (ΓB)TAdgBS
V S (3)

(4)

We can invert V S on both sides.

ΓST

= (ΓB)TAdgBS
(5)

ΓS = AdTgBS
ΓB (6)

ΓS = AdT
g−1
SB

ΓB (7)

(8)

This proves the adjoint relationship between wrenches!

4 Jacobians for Wrenches

Last semester, we used the spatial and body Jacobians to transform individual joint velocities to the end-
effector velocity and vice-versa. You also used this concept in Project 1 to generate jointspace trajectory
commands. Recall that

V S = JS(θ)θ̇

V B = JB(θ)θ̇

where θ̇ is a vector of individual joint velocities. The Jacobian itself is a composition of the individual joint
twists in their current configuration.

To compute the torques on each joint based on a wrench applied in the spatial or body frame, we can use
the Jacobian as well: τ1...

τn

 = (JS)TΓS = (JB)TΓB

Problem 3: Compute the joint torques if we apply a force on the body frame.

In this figure, τ1τ2
τ3

 = (JB)TΓB
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The Jacobian can be computed as the current twists of each joint. Joint 1 is worked out here.

w =

10
0

 , q =

 0
−l1
0


−w × q =

0
0
l1



JT
B =

0 0 l1 1 0 0

. . . (ξ†2)
T . . .

. . . (ξ†3)
T . . .



5 Grasp map

When going into robotic hands, we want to actually grab objects. One contact is defined by

Fci = Bcifci

Where B is the contact basis, or the directions in which the contact can apply force, and f is a vector in
that basis (the actual forces being applied). F is the 6x1 wrench which the contact applies. In our case, we
use a soft contact model, which has both lateral and torsional friction components, so the basis is

Bci =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1


However, in the real world, friction is not infinite. For the contact to resist a wrench without slipping, the
contact vector must lie within the friction cone, which is defined

FCci = {f ∈ R4 :
√

f2
1 + f2

2 ≤ µf3, f3 > 0, |f4| ≤ γf3}

f3 is the amount of normal force being applied, f1 and f2 are the forces in the other two perpendicular
directions, and f4 is a torque. The friction cone therefore tells us the forces that can be applied onto an
object that would be resisted by this contact.

However, we want the wrenches that a contact point can resist in the world frame, not the contact frame.
So we use the adjoint to transform the contact basis:

Gi :=

[
Roci 0

p̂ociRoci Roci

]
Bci = AdT

g−1
coi

Bci

A grasp is a set of contacts (maybe multiple fingers in a hand or the two sides of a Sawyer gripper), so we
define the wrenches (in the world frame) a grasp can resist as:

Fo = G1fc1 + · · ·+Gkfck =
[
G1 · · · Gk

]  fc1
...

fck

 = Gf

The resulting compound matrix G above is called the grasp map, summing up multiple forces.
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6 Force closure

A grasp is in force closure when finger forces lying in the friction cones span the space of object wrenches

G(FC) = R6

Essentially, this means that any external wrench applied to the object can be countered by the sum of contact
forces (provided the contact forces are high enough).

For a two-contact soft-fingered grasp, we also have the following theorem which makes it very easy to check
when a grasp is in force closure. This is theorem 5.7 from MLS.

Theorem. A spatial grasp with two soft-finger contacts is force-closure if and only if the line connecting the
contact point lies inside both friction cones.

Figure 1: Two finger grasp.

6.1 Discretizing the Friction Cone

Checking that f ∈ FC can be difficult. Often when evaluating grasps, we will write down an optimization
problem that has f ∈ FC as a constraint.

FCci =


√
f2
1 + f2

2 ≤ µf3

f3 > 0

|f4| ≤ γf3

We can approximate the (conical) friction cone as a pyramid with n vertices. The level sets of the friction
cone are circles, but the level sets for this convex approximation are n sided polygons circumscribed by the
circle. Thus, the interior of this convexified friction cone is a conservative approximation of the friction cone
itself.

Figure 2: Approximations of the friction cone. From section 5.3 of MLS.

Any point in the interior of this pyramid can be described as a sum of

f = α0f0 +

n∑
i=1

αifi = Fα

5



where fi are the edges of the pyramid and f0 a straight line in z, and the weights α are all non-negative.
Here, we can write a composite matrix F (different from the F above!) with the fi vectors as its columns.
This lets us more easily characterize any f in the friction cone. We make the approximation that f ∈ FC if
and only if there exists a non-negative vector α such that f = Fα.

With this approximation, the condition that f ∈ FC is equivalent to the pair of linear constraints {f =
Fα, α ≥ 0} (where this inequality is understood to be element-wise).

Problem 4:
Let w be a given wrench. Let a two-contact grasp be given to you with contact grasp maps G1 and G2.
We wish to find the input force f ∈ FC with the smallest norm that can resist the wrench w applies at the
center of mass of the object being grasped. Using the polyhedral approximation of the friction cone, write
this as a quadratic program.

This is the quintessential grasping optimization problem. How do we find out how to optimize the forces
with which we are holding our object? In this particular case, we are given our grasp maps, so we know the
contact points. Usually, those are sampled, and the best set of contact points with the best set of forces is
used for our final output. This is just one way to find grasps - you can perform research on the Ferrari-Canny
metric or Robust Force Closure for other approaches.

We want to minimize the force that we need to apply to hold our object. As a result, the optimization
objective is min fT f .

Now, we determine our constraints for our QP solver. Our f vector is a composition of 2 inner vectors, one

for each contact point: f =

[
fa
fb

]
. Each f is a composition of the x, y, and z elements.

We want our normal forces to be positive. As a result, fa,z, fb,z ≥ 0.

We want to ensure that our forces lie within our friction cone when we’re optimizing. We can therefore write
out the constraints fa = Fαa and fb = Fαb with αa, αb ≥ 0.

Finally, we want to best oppose the wrench in the problem and want to apply a force that can do so. Thus,
we get −w = Gf , where Gf applies the grasp map on our contact forces and determines how well it is
holding the object. We negate w because we want to provide an opposing force.

Problem 5:
Consider the box grasped by 2 soft-finger contacts shown in the figure above. Find the grasp map. Assume
the object is a cube of side-length 2.

Let’s find the rotation and position matrix for each of the contacts, and we can aplpy our grasp map formula
directly.
Contact 1:

Rc1 =

0 1 0
0 0 1
1 0 0

 , pc1 =

 0
−r
0


Contact 2:

Rc2 =

1 0 0
0 0 −1
0 1 0

 , pc2 =

0r
0


Each Gi can be found in the following way:

Gi =

[
Roci 0

p̂ociRoci Roci

]

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1
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The final G matrix we end up with is

G =


0 1 0 0 1 0 0 0
0 0 1 0 0 0 −1 0
1 0 0 0 0 1 0 0
−1 0 0 0 0 r 0 0
0 0 0 1 0 0 0 −1
0 r 0 0 −r 0 0 0


This grasp map would be multiplied by the force vector of each contact to determine the wrenches that can
be resisted.
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