C106B Discussion 9: Grasping

1 Introduction

Grasping objects is a major part of current robotic manipulation research. To approach this problem, we will discuss wrenches and their mathematical properties and then apply them to the idea of contact forces.

2 Wrenches

Last semester, we started our discussion of robotic arm movement talking about kinematics. This deals with the different positions and angles our body frame can potentially reach. The orientation of the \mathbf{B} frame with respect to the \mathbf{A} frame is given by the forward kinematic map:

$$
g_{A B}\left(\theta_{1}\right)=e^{\hat{\xi}_{1} \theta_{1}} g_{A B}(0)
$$

We then discussed kinetics, which deal with velocities and accelerations. The relative velocity of a point given in the body frame for some angular velocity $\dot{\theta}$ is

$$
\begin{aligned}
& v_{q_{S}}=\hat{V}_{A B}^{s} q_{S}, \quad V_{A B}^{s}=\xi^{\prime} \dot{\theta}=\left[\begin{array}{c}
v_{A B}^{s} \\
\omega_{A B}^{s}
\end{array}\right] \\
& v_{q_{B}}=\hat{V}_{A B}^{b} q_{B}, \quad V_{A B}^{b}=\xi^{\dagger} \dot{\theta}=\left[\begin{array}{c}
v_{A B}^{b} \\
\omega_{A B}^{b}
\end{array}\right]
\end{aligned}
$$

where ξ^{\prime} and ξ^{\dagger} are the current spatial and body twists.
Now, we move to dynamics for an arm - analyzing the relationship between forces applied on the body and its motion! A wrench follows the same kind of linear/angular form as twists:

$$
\Gamma=\left[\begin{array}{l}
f \\
\tau
\end{array}\right]
$$

where f is a linear force component, and τ is a torque.
Unlike angular velocities, however, to compute the total torque on some joint, we use the transpose of the twist.

$$
\begin{aligned}
\tau & =\xi^{\prime T} \Gamma^{S} \\
\tau & =\xi^{\dagger^{T}} \Gamma^{B}
\end{aligned}
$$

The difference between the spatial and body wrench Γ s is the frame in which we are applying the wrench.

Problem 1: How does a wrench Γ^{B} applied on the \mathbf{B} frame affect the torque at joint ξ_{1} ?

3 Adjoints for Wrenches

Spatial and body velocities are related to one another using adjoints (which are invertible):

$$
\begin{gathered}
V_{A B}^{S}=A d_{g_{A B}} V_{A B}^{b} \\
A d_{g}=\left[\begin{array}{cc}
R & \hat{p} R \\
0 & R
\end{array}\right]
\end{gathered}
$$

Can we figure out a similar relationship for wrenches?
It turns out we can!

$$
\Gamma^{S}=A d_{g_{A B}^{-1}}^{T} \Gamma^{B}
$$

Problem 2: The work of a force is calculated by $W=F \cdot d$. Two wrenches are equivalent if they generate the same amount of work. Use this concept to prove the adjoint relationship for wrenches.

4 Jacobians for Wrenches

Last semester, we used the spatial and body Jacobians to transform individual joint velocities to the endeffector velocity and vice-versa. You also used this concept in Project 1 to generate jointspace trajectory commands. Recall that

$$
\begin{aligned}
V^{S} & =J^{S}(\theta) \dot{\theta} \\
V^{B} & =J^{B}(\theta) \dot{\theta}
\end{aligned}
$$

where $\dot{\theta}$ is a vector of individual joint velocities. The Jacobian itself is a composition of the individual joint twists in their current configuration.

To compute the torques on each joint based on a wrench applied in the spatial or body frame, we can use the Jacobian as well:

$$
\left[\begin{array}{c}
\tau_{1} \\
\vdots \\
\tau_{n}
\end{array}\right]=\left(J^{S}\right)^{T} \Gamma^{S}=\left(J^{B}\right)^{T} \Gamma^{B}
$$

Problem 3: Compute the joint torques if we apply a force on the body frame.

5 Grasp map

When going into robotic hands, we want to actually grab objects. One contact is defined by

$$
F_{c_{i}}=B_{c_{i}} f_{c_{i}}
$$

Where B is the contact basis, or the directions in which the contact can apply force, and f is a vector in that basis (the actual forces being applied). F is the 6 x 1 wrench which the contact applies. In our case, we use a soft contact model, which has both lateral and torsional friction components, so the basis is

$$
B_{c_{i}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

However, in the real world, friction is not infinite. For the contact to resist a wrench without slipping, the contact vector must lie within the friction cone, which is defined

$$
F C_{c_{i}}=\left\{f \in \mathbb{R}^{4}: \sqrt{f_{1}^{2}+f_{2}^{2}} \leq \mu f_{3}, f_{3}>0,\left|f_{4}\right| \leq \gamma f_{3}\right\}
$$

f_{3} is the amount of normal force being applied, f_{1} and f_{2} are the forces in the other two perpendicular directions, and f_{4} is a torque. The friction cone therefore tells us the forces that can be applied onto an object that would be resisted by this contact.

However, we want the wrenches that a contact point can resist in the world frame, not the contact frame. So we use the adjoint to transform the contact basis:

$$
G_{i}:=\left[\begin{array}{cc}
R_{o c_{i}} & 0 \\
\widehat{p}_{o c_{i}} R_{o c_{i}} & R_{o c_{i}}
\end{array}\right] B_{c_{i}}=A d_{g_{c o s_{i}}^{-1}}^{T} B_{c_{i}}
$$

A grasp is a set of contacts (maybe multiple fingers in a hand or the two sides of a Sawyer gripper), so we define the wrenches (in the world frame) a grasp can resist as:

$$
F_{o}=G_{1} f_{c_{1}}+\cdots+G_{k} f_{c_{k}}=\left[\begin{array}{lll}
G_{1} & \cdots & G_{k}
\end{array}\right]\left[\begin{array}{c}
f_{c_{1}} \\
\vdots \\
f_{c_{k}}
\end{array}\right]=G f
$$

The resulting compound matrix G above is called the grasp map, summing up multiple forces.

6 Force closure

A grasp is in force closure when finger forces lying in the friction cones span the space of object wrenches

$$
G(F C)=\mathbb{R}^{6}
$$

Essentially, this means that any external wrench applied to the object can be countered by the sum of contact forces (provided the contact forces are high enough).

For a two-contact soft-fingered grasp, we also have the following theorem which makes it very easy to check when a grasp is in force closure. This is theorem 5.7 from MLS.
Theorem. A spatial grasp with two soft-finger contacts is force-closure if and only if the line connecting the contact point lies inside both friction cones.

Figure 1: Two finger grasp.

6.1 Discretizing the Friction Cone

Checking that $f \in F C$ can be difficult. Often when evaluating grasps, we will write down an optimization problem that has $f \in F C$ as a constraint.

$$
F C_{c_{i}}=\left\{\begin{array}{l}
\sqrt{f_{1}^{2}+f_{2}^{2}} \leq \mu f_{3} \\
f_{3}>0 \\
\left|f_{4}\right| \leq \gamma f_{3}
\end{array}\right.
$$

We can approximate the (conical) friction cone as a pyramid with n vertices. The level sets of the friction cone are circles, but the level sets for this convex approximation are n sided polygons circumscribed by the circle. Thus, the interior of this convexified friction cone is a conservative approximation of the friction cone itself.

Figure 2: Approximations of the friction cone. From section 5.3 of MLS.

Any point in the interior of this pyramid can be described as a sum of

$$
f=\alpha_{0} f_{0}+\sum_{i=1}^{n} \alpha_{i} f_{i}=F \alpha
$$

where f_{i} are the edges of the pyramid and f_{0} a straight line in z, and the weights α are all non-negative. Here, we can write a composite matrix F (different from the F above!) with the f_{i} vectors as its columns. This lets us more easily characterize any f in the friction cone. We make the approximation that $f \in F C$ if and only if there exists a non-negative vector α such that $f=F \alpha$.

With this approximation, the condition that $f \in F C$ is equivalent to the pair of linear constraints $\{f=$ $F \alpha, \alpha \geq 0\}$ (where this inequality is understood to be element-wise).

Problem 4:

Let w be a given wrench. Let a two-contact grasp be given to you with contact grasp maps G_{1} and G_{2}. We wish to find the input force $f \in F C$ with the smallest norm that can resist the wrench w applies at the center of mass of the object being grasped. Using the polyhedral approximation of the friction cone, write this as a quadratic program.

Problem 5:

Consider the box grasped by 2 soft-finger contacts shown in the figure above. Find the grasp map. Assume the object is a cube of side-length 2 .

