
C106B Discussion 1: Dynamical Systems & Linear Control

1 Introduction

1.1 Where will discussions fit in to 106B?

Discussions in 106B will primarily be to reinforce your understanding of concepts from lecture with
practice problems. In some weeks, we’ll introduce some new foundational material in discussion so the
following lectures can cover active areas of research in those subjects. Discussions will always be recorded
and live streamed over zoom.

1.2 What content will we cover in this class?

In this class, we’ll cover topics ranging from nonlinear control to path planning, vision, and optimal
control and reinforcement learning (RL). As we get into more advanced topics, we’ll provide you with
the tools you need to get started in topics such as analysis, probability, and machine learning - we’ll only
assume 106A as a background.

1.3 Learning Community

In this class, no student should feel left behind! Please ask us or any of your classmates if you have any
questions at all! We want to make this course a wonderful learning experience for all of you.

2 State Space

Nonlinear systems of differential equations come in all shapes and sizes! When trying to perform general
analysis of these systems, this can be challenging! Is there some convention we can use to treat general
nonlinear systems?
In general, we say that any (time invariant) nonlinear system may be described by the following equations:

ẋ = f(x, u), x ∈ Rn, u ∈ Rm State Equation (1)

y = h(x, u) y ∈ Rp Output Equation (2)

This description of a system is called state space. What are the different components?

1. x: State vector, contains smallest set of variables needed to completely describe system configura-
tion

2. u: Input vector, contains variables we have total control over

3. y: Output vector, commonly contains variables we are interested in controlling or those we measure
with sensors

To put an nth order nonlinear differential equation, x(n) = h(x, u), x, u ∈ R into state space form, we
transform it into a system of n first order equations using phase variables.

q0 = x, q1 = ẋ, ... qn−1 = x(n−1) (3) q̇0
...

q̇n−1

 =

 q1
...

h(q0, u)

 (4)

q̇ = f(q, u) (5)
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Problem 1: Consider a planar quadrotor of mass m and inertia about the x axis I which is constrained
to move in the yz plane. The dynamics of the quadrotor are described by:

mÿ = −F sin θ (6)

mz̈ = F cos θ −mg (7)

Iθ̈ = M (8)

Where F ∈ R and M ∈ R are a inputs to the system.

Rewrite the dynamics of the planar quadrotor as system of first order differential equations of the form:

q̇ = f(q, u) (9)

Hint: Find a set of phase variables for each differential equation and put them all together into one
vector!
Solution: We choose the state vector: q = [q1, q2, q3, q4, q5, q6] = [y, z, θ, ẏ, ż, θ̇] and an input vector
u = [u1, u2] = [F,M ] Using this state vector, we can rewrite the dynamics in state space as:

q̇1
q̇2
q̇3
q̇4
q̇5
q̇6

 =


q̇4
q̇5
q̇6

−u1 sin q3/m
u1 cos q3/m− g

u2/I

 (10)
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3 Linear Differential Equations

Oftentimes, we deal with linear differential equations of the form:

ẋ = Ax (11)

Where A ∈ Rn×n, x ∈ Rn. The solution to this differential equation for an initial condition x(0) = x0 is:

x(t) = eAtx0 (12)

Where eAt ∈ Rn×n is the matrix exponential of At, defined:

eAt = I +At+
(At)2

2!
+

(At)3

3!
+ ... (13)

Problem 2: Show that the matrix exponential of a diagonal matrix A ∈ Rn×n is computed:

eAt =

e
λ1t . . . 0
...

. . .
...

0 . . . eλnt

 (14)

Where λi are the eigenvalues of A.
Solution: We know that the mth power of a diagonal matrix with eigenvalues λ1, λ2, ..., λn is computed:

Am =

λ
m
1 . . . 0
...

. . .
...

0 . . . λm
n

 ∈ Rn×n (15)

Using this fact, we plug At into the series definition of the matrix exponential, and find:

eAt =


(1 + λ1t+

(λ1t)
2

2! + ...) . . . 0
...

. . .
...

0 . . . (1 + λnt+
(λnt)

2

2! + ...)

 ∈ Rn×n (16)

We now recognize each of these diagonal entries as the scalar Taylor series of eλit. Thus:

eAt =

e
λ1t . . . 0
...

. . .
...

0 . . . eλnt

 (17)

This completes the proof!
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4 Concepts of Stability

An equilibrium point of a system ẋ = f(x, u) is a point (xe, ue) where:

0 = f(xe, ue) (18)

At an equilibrium point, the evolution of the system is “frozen.” Notice that the zero vector x = 0 is
always an equilibrium point of ẋ = Ax.
Let’s think of a rough definition of what it means for an equilibrium point to be stable. If we start at
an initial condition x0 close to an equilibrium point and remain close for all time, the equilibrium point
is stable. Otherwise, the equilibrium point is unstable.
The following problem highlights a special case of a relationship we’ll explore more in homework 1.

Problem 3: Suppose that A ∈ Rn×n is a diagonal matrix with real eigenvalues. Consider the linear
differential equation:

ẋ = Ax, x ∈ Rn×n (19)

Show that limt→∞x(t) = 0 for any initial condition x(0) = x0 ∈ Rn if all of the eigenvalues of A are
less than zero. What does this tell us about the effect of eigenvalues on the stability of xe = 0?
Solution: We know that the solution to this differential equation is given:

x(t) = eAtx0 (20)

For any initial condition x0. Using the previous question, we know that eAt for diagonal A is computed:

eAt =

e
λ1t . . . 0
...

. . .
...

0 . . . eλnt

 (21)

Thus, multiplying by the initial condition vector, we get:

x(t) = eAtx0 =

eλ1tx01

...
eλntx0n

 (22)

This will converge to zero only when all of the eigenvalues of A are less than zero (since they are all real
numbers). This tells us if our eigenvalues are real, xe = 0 is stable if the eigenvalues are all negative.
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5 State Feedback

We previously saw that the stability of the origin of a linear system is linked to the eigenvalues of the
matrix A. Can we use this knowledge to stabilize unstable linear systems?
Suppose we have a linear system, this time with a scalar input u ∈ R, as follows:

ẋ = Ax+Bu, x ∈ Rn, u ∈ R (23)

If an eigenvalue of A has a real component greater than zero, this system will be naturally unstable if
we don’t provide the system with some control input. Let’s try the input:

u = −Kx, K = [k1 k2 ... kn] (24)

Plugging this into our system:

ẋ = (A−BK)x (25)

Using this input, we can move the eigenvalues of many linear systems to stable locations! This is a form
of feedback control known as state feedback. Note that state feedback also extends to the multi-input
case.
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