
C106B Discussion 10: Control Barrier Functions

1 Introduction

Today, we’ll talk about:

1. Defining safe sets

2. Control barrier functions

3. Control barrier function quadratic programs

If you’re interested in learning more about this material, we highly recommend reading Control Barrier
Functions: Theory and Applications.

2 Defining Safe Sets

Many systems in robotics, such as autonomous aircraft and vehicles, are safety-critical systems. When
dealing with these systems, it’s important that we’re able to formally prove that our systems will be
stable! To accomplish this, we’ll need a few definitions.

Definition 1 Safe Set
The safe set of a system, C, is the set containing all of the state vectors x ∈ Rn where the system is said
to be safe.

C ⊆ Rn (1)

For high dimensional nonlinear systems, these safe sets can be challenging to visualize! Can we come up
with a simple function of the state vector that helps us describe if our system will be safe? Consider the
following rules for a function h(x) : Rn → R and a safe set C.

h(x) ≥ 0, x ∈ C (2)

h(x) = 0, x ∈ ∂C (3)

h(x) > 0, x ∈ int(C) (4)

When the state vector is inside or on the boundary of the safe set, the function h(x) should be greater
than or equal to zero. If the state vector x is outside of the safe set, the function h(x) should be less
than zero! This gives us a condition to test if a state vector x is safe or unsafe!
Furthermore, to gain access to some nice mathematical properties further down the line, we’ll assume
that the function h is continuous and differentiable with respect to the state vector x.

Problem 1: Consider the following scenario. Imagine we have a turtlebot with a state vector q ∈ R3:

q =

xy
ϕ

 (5)

Where (x, y) are the coordinates of the center of the turtlebot and ϕ is the heading angle. Suppose we
have a circular obstacle of radius ro located at (xo, yo). If we consider collisions with the obstacle unsafe,
come up with a function h(q) according to the rules above that determines if the turtlebot is in a safe
or unsafe set. Note: You may ignore the radius of the turtlebot for this simple example.

1

ME/EECS/BioE C106B Robotic Manipulation & Interaction

3 Control Barrier Functions

Can we somehow use the h(x) function that encodes the safe set of our system to guarantee our system
remains within the safe set for all time? Let’s think about some ways we can ensure h(x) > 0.
Let’s imagine we have a control affine system of the form:

ẋ = f(x) + g(x)u (6)

We’d like to somehow figure out an input u to the system that keeps the system inside the safe set. To
do this, we may identify a constraint on the system that involves u and enforces safety. Currently, our
expression for h(x) has no input in it, yet the expression for ẋ does! We know ḣ(x) = ∂h

∂x ẋ involves ẋ -
let’s try working with this expression.
Let’s consider the following differential equation:

ḣ = −γh (7)

We know that the solution to this equation is given by h(t) = exp(−γt)h0, and that this function is
always greater than zero for h0 ≥ 0! Thus, if we enforce the constraint:

ḣ ≥ −γh (8)

We’ll get that h(t) ≥ exp(−γt)h0. Now, all that we need to do is bring the input into this constraint!
Taking the derivative of h along the trajectories of the system, this gives us the constraint:

Lfh+ Lghu ≥ −γh (9)

This leads us to the following definition:

Definition 2 Control Barrier Function (Informal Definition)
A function h(x) that encodes the safe set of the system is called a control barrier function if there exists
an input u and a constant γ > 0 such that for all x ∈ C:

Lfh+ Lghu ≥ −γh (10)

Thus, if we can satisfy this constraint, we’ll be able to guarantee the safety of the system!

Problem 2: The turtlebot system has dynamics:

q̇ =

ẋẏ
ϕ̇

 =

cosϕ 0
sinϕ 0
0 1

[
u1

u2

]
(11)

If a control barrier function for this system is h(q) = x− xsafe, write out the constraint:

ḣ ≥ −γh (12)

2

ME/EECS/BioE C106B Robotic Manipulation & Interaction

4 The CBF-QP Controller

Now, we have a constraint that guarantees us the safety of our system (provided we can find an appro-
priate input). How can we actually identify what that input might be? When finding an input to keep
our system in the safe set, we have a few criteria.
Our system might have other tasks, such as trajectory tracking, that we’d like it to execute. We’d like to
ensure our system is kept safe while still being able to track desired trajectories and perform other similar
tasks. To accomplish this goal, we formulate the control barrier function quadratic program (CBF-QP)
controller.

Definition 3 CBF-QP Controller
Suppose we have a system ẋ = f(x)+g(x)u with a control barrier function h(x) and a nominal controller
k(x). To find an input to the system that guarantees safety while allowing for trajectory tracking, we
may solve the optimization problem:

usafe = arg min
u∈U

||u− k(x)||2 (13)

s.t. Lfh+ Lghu ≥ −γh (14)

Note that for a fully nonlinear system ẋ = f(x, u), we would simply use a barrier constraint of the form
ḣ ≥ −γh, as we can no longer take Lie derivatives to get the derivative of h along the trajectories of the
system.

3

	Introduction
	Defining Safe Sets
	Control Barrier Functions
	The CBF-QP Controller

